Interpretation of the morphological signature of the Steinheim impact structure (Kord Ernstson, Ferran Claudin, 2021). Гравитационные аномалии кратера. The Steinheim Basin with a prominent central uplift is thought to be a smaller companion to the Ries crater. From gravity measurements and morphometric considerations, a much larger (~ 7-8 km) than the commonly mentioned 3.7 km-diameter is very probable. (ERNSTSON CLAUDIN IMPACT STRUCTURES – METEORITE CRATERS). |
Аномалии силы тяжести в районе кратера (получено по данным GLOBAL MARINE GRAVITY V18.1 средствами системы ENDDB).
Глубинные деформации кратера Штейнхейм (Д=3 км). Видна антиклинальная структура центрального поднятия и разлом по его периферии, маркируемый на местности источниками радоновых вод. (Хрянина, 1987). Shatter cones showing counter orientation in Steinheim impact structure (Wayne BURN, 2015). |
Штейнгеймский бассейн представляет собой плоский импактный кратер диам. 3,5-4 км с центр. поднятием, возникший в среднем миоцене при ударе, возможно, каменного метеорита. При столкновении имели место высокие т-ры, ударная волна, высокие давления. Космическое тело и часть контактировавших с ним пород испарились, а часть затронутых пород середины и низов белой и отчасти бурой юры (верхней и средней) в виде обломков и пыли была поднята в атмосферу, а затем осела в виде "первичной брекчии бассейна", перекрыв раздробленные глыбы пород белой юры в кратере. По ударному каналу в середине центр. поднятия космическое тело проникло вглубь. Изложена история изучения кратера с 1866 г. В 1986 г. под озерными отложениями были вскрыты упомянутые первичные брекчии, а в них обнаружена глина кейпера. Это говорит о более глубоком, чем считалось ранее, ударном воздействии метеорита (до глубины в 700 м от тогдашней поверхности Земли) и позволяет судить о ходе выброса пород. Описан литологический состав глин. Штейнгеймский бассейн представляет собой плоский импактный кратер диам. 3,5-4 км с центр. поднятием, возникший в среднем миоцене при ударе, возможно, каменного метеорита. При столкновении имели место высокие т-ры, ударная волна, высокие давления. Космическое тело и часть контактировавших с ним пород испарились, а часть затронутых пород середины и низов белой и отчасти бурой юры (верхней и средней) в виде обломков и пыли была поднята в атмосферу, а затем осела в виде "первичной брекчии бассейна", перекрыв раздробленные глыбы пород белой юры в кратере. По ударному каналу в середине центр. поднятия космическое тело проникло вглубь. Изложена история изучения кратера с 1866 г. В 1986 г. под озерными отложениями были вскрыты упомянутые первичные брекчии, а в них обнаружена глина кейпера. Это говорит о более глубоком, чем считалось ранее, ударном воздействии метеорита (до глубины в 700 м от тогдашней поверхности Земли) и позволяет судить о ходе выброса пород. Описан литологический состав глин.
(Winfried Reiff, 1988).
В вост. части гор Швабской Юры расположена округлая котловина, бас. Штейнхейм, известный геологам уже почти три столетия и лишь с 60-х гг. нынешнего века подозреваемый на метеоритный кратер. Бас., расположенный в ~40 км от известного кратера Рис, имеет средний диаметр 3,5 км, его центр. поднятие возвышается на 50-55 м над подошвой. В 1936 г. О. Schutz впервые предположил происхождение как бас., так и кратера Рис в результате удара метеорита на основании сравнения этих структур с кратером Баррингер в Аризоне. В конце 70-х гг. эта идея получила убедительное подтверждение после двух глубинных бурений (603 и 353 м) и геофизических исследований, показавших, что породы сильно деформированы на глубину до 1000-1100 м. Бас. Штейнхейм и кратер Рис возникли в одно время, около 14,7 млн. л. н. Согласно расчету, бас. мог образоваться от удара каменного метеорита диаметром 80-100 м и скоростью около 25 км/с. В результате такого события третичный ландшафт изменился за несколько секунд. Энергия удара соответствовала взрыву 3500 атомных бомб Хиросимы, либо 3-4-м водородным бомбам.
(Luthi, 1992).
Впадина представляет собой астроблему, возникшую в среднем миоцене. Описана история формирования озера, заполнившего впадину, в том числе развитие гастропод
(Reiff Winfried, 1992).
Бас. Штейнхайм, сформировавшийся в позднетретичное время в результате космического воздействия, является наиболее важным геол. и палеонтологическим местонахождением Германии. Литологически осадки бассейна представлены известково-мергелистыми отложениями. Примерный возраст флоры 14,8+-0,7 млн. л. н. Флора озерных отложений, содержащая такие гидрофиты, как Characeae, Potamogeton, Eichhornia Isoetes, указывает на олиготрофные водные условия. В окрестностях озерного кратера произрастали леса средиземноморского типа с участием Quercus, Celtis, Juglaus, Pistacia, Leguminosae. Климат времени накопления осадков был теплоумеренным с явно выраженными сухими периодами. Современные аналоги изученной флоры отмечены на Кавказе и на Балканах.
Изучена среднемиоценовая флора озерных отложений на месте метеоритного кратера в Юж. Германии. Определено 570 обазцов, 33 вида. Выявлены гидрофиты - Characeae, Potamogeton, Eichhornia, Isoetes, прибрежные виды с доминированием Gleditsia. Островная часть суши была занята лесами средиземноморского типа - Quercus, Celtis, Juglans, Pistacia, Leguminosae. Лавролистные виды и хвойные не представлены. Климат того времени был скорее всего умеренным с летней засухой.
(Schweigert, 1993).
Приведены результаты {13}С ЯМР-спектроскопии вращения под магическим углом на частоте 100,575 МГц пяти образцов известняка и глинистого известняка из мальма и доггера астроблемы Стейнхеим (ФРГ) с различными степенями проявления ударного метаморфизма. Стандартом служил известняк из Золенхофена, не испытавший сжатия. Величина химического сдвига пяти образцов незначительно изменяется (165,6-169,4 млн{-1}), в отличие от значительно изменяющегося от образца к образцу полуширины максимума ЯМР-спектра (76-417 Гц). Отмечено хорошее совпадение ожидаемых величин ударного сжатия и наблюдаемых параметров ЯМР-спектров, которые при должной стандартизации могут быть использованы для построения барометра импактитов
(Skala, Rohovec, 1998).
Кратер Штейнхейм расположен в 40 км на ЗЮЗ от кратера Рис, имеет диаметр 3,4км, глубину около 90м, в центре его присутствует "центральная горка" в виде холма диаметром около 900м и высотой 50м. Кратер образован в пологонаклонных породах юрского и триасового возраста и частично заполнен третичными озёрными осадками и четвертичным аллювием. Центральное поднятие сложено интенсивно дислоцированными юрскими известняками, мергелями, аргиллитами и песчаниками. Скважиной, пробуренной на центральном поднятии, был вскрыт блок триасовых пород мощностью 80м, залегающий на дислоцированных аргиллитах средней юры. В кратере присутствуют аллогенные брекчии, в породах отмечены конусы разрушения. Абсолютный возраст импактитов такой же, как у кратера Рис, что позволяет считать, что кратеры образованы осколками одного метеоритного тела. На одной оси с ними, в 60 км к ЗЮЗ от Штейнхейма, находится диатремовое поле Урах (более 250 диатрем). Возраст диатрем такой же, как и возраст кратеров Рис и Штейнхейм - 14,7 млн.лет по K-Ar. Кратер приурочен к самой крупной на территории магнитной аномалии, связанной по всей вероятности, с породами палеозойского кристаллического фундамента, что говорит против его импактной природы. На продолжении линии Урах-Рис существует ещё одна, четвёртая структура - купол Стопфейнхейн.
Автор предлагает такую модель их образования: Болид Рис, пролетая над плато Швабский Альб, вступил в энергетические взаимодействия (гравитационные и электрические) с его недрами. Сначала образовалось поле диатрем Урах, затем болид инициировал взрывы из земныз недр, которые и образовали два кратера - Штейнхейм и Рис, а затем, на подлёте к будущему куполу Стопфейнхейн, взорвался сам. Тогда поднятие плато Швабский Альб можно связать с гравитационными приливообразующими силами со стороны болида (Трошичев и др., 1996), как и образование на его ЮВ склоне Дунайской флексуры. В пользу воздушного развала метеоритного тела Рис свидетельствует месторождение гетитовых руд вероятного метеоритного происхождения (Appel, Garges, 1991).
В Европе представлено богатое наследие структур метеоритных столкновений различных размеров, варьирующих от нескольких метров до нескольких десятков километров, геологический возраст которых восходит от протерозоя до четвертичного. Событие Риз-Штайнхэйм в южной Германии рассматривается как основной пример двойной столкновительной системы, произведшей две наилучшим образом сохранившиеся комплексные ударные структуры, известные в мировом масштабе. Обобщение кратко обозревает доказанные ударные структуры в Германии, во Франции, в восточной Европе, включая Финляндию, Швецию и Норвегию, а также выброшенные соударением отложения в Шотландии и других местах, и представляет недавние достижения в области исследования европейских ударных кратеров.
(Schmieder, Buchner, 2013).